Supplemental Information

to accompany

Landsat-based detection of mast events in white spruce (Picea glauca) forests

Matthew Garcia*, Benjamin Zuckerberg, Jalene M. LaMontagne, and Philip A. Townsend

*corresponding author: <u>matt.e.garcia@gmail.com</u>

Submitted to Remote Sensing of Environment (Elsevier) on 27 April 2020

Revision 1 submitted on 27 October 2020

Revision 2 submitted on 21 December 2020

Contents (in order of reference in the main text)

- Appendix S1: Software description.
- Table S1: Example *statsmodels* prediction table result.
- Figure S1: Correlation matrix across time series of VI annual regression slopes.
- Table S2: Results for all two-VI logistic regression models.
- Figure S2: LMM coefficients for the two-VI model using NDVI + NDII.
- Table S3: Averaged two-VI logistic model prediction results.
- Table S4: Results for unrestricted multi-VI logistic regression models.
- Figure S3: LMM coefficients for the top (lowest *AICc*) multi-VI model.
- Figure S4: LMM coefficients for the best (highest Cohen's κ) multi-VI model.
- Table S5: Prediction results using the GRVI + RSR + NBR model.

Appendix S1: Software description

Our Landsat preprocessing procedures for topographic correction, image masking, VI calculations, and data organization used *Python* v3.8.5 (Oliphant, 2007; Millman and Aivazis, 2011; Pérez et al., 2011) and several libraries including *numpy* v1.19.1 (Harris et al., 2020) and *scipy* v1.5.2 (Virtanen et al., 2020), *GDAL* v3.1.2 (Warmerdam, 2008) and *pyproj* v2.6.1 (Snow et al., 2020), and *h5py* v2.10.0 (Collette, 2013) for the HDF5 data format (HDF Group, 1997). Our procedures to query and extract VI values at the selected study sites used several additional Python libraries including *pandas* v1.1.1 (McKinney et al., 2010), *pykml* v0.2.0 (https://pythonhosted.org/pykml/), and *shapely* v1.7.1 (https://shapely.readthedocs.io/).

We developed our statistical analyses in *Python* using *Jupyter* v1.0.0 notebooks (Kluyver et al., 2016; Randles et al., 2017; Perkel, 2018; Wofford et al., 2020), a browser-based graphical extension of *IPython* v7.18.1 (Pérez and Granger, 2007). These *Jupyter*-based analyses used a number of *Python* libraries: *numpy*, *pandas*, *pingouin* v0.3.8 (Vallat, 2018), *scipy*, *scikit-learn* v0.23.2 (Pedregosa et al., 2011), and *statsmodels* v0.11.1 (Seabold and Perktold, 2010). We generated all of the figures in this work, except for the photograph in Figure 1, using *matplotlib* v3.3.1 (Hunter, 2007) and *seaborn* v0.10.1 (Waskom et al., 2020). We have made our extracted and processed Landsat VI datasets and *Python/Jupyter* statistical analysis notebooks openly available at https://github.com/megarcia/spruce_masting.

References

Collette, A., 2013: Python and HDF5. O'Reilly Media, ISBN 9781449367831.

- Harris, C.R., and 24 coauthors, 2020: Array programming with NumPy. *Nature*, **585**, 357–362, doi: 10.1038/s41586-020-2649-2.
- HDF Group, 1997: Hierarchical Data Format, Version 5. http://www.hdfgroup.org/HDF5.
- Hunter, J.D., 2007: Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, 9, 90–95, doi: 10.1109/MCSE.2007.55.
- Kluyver, T., B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and the Jupyter Development Team, 2016: Jupyter Notebooks—a publishing format for reproducible computational workflows. *Positioning and Power in Academic Publishing: Players, Agents and Agendas*, Amsterdam: IOS Press, 87–90, doi: 10.3233/978-1-61499-649-1-87.
- McKinney, W., 2010: Data structures for statistical computing in Python. *Proceedings of the 9th Python in Science Conference*, Austin, Texas, 56–61, doi: 10.25080/Majora-92bf1922-00a.
- Millman, K.J., and M. Aivazis, 2011: Python for scientists and engineers. *Computing in Science Engineering*, **13**, 9–12, doi: 10.1109/MCSE.2011.36.
- Oliphant, T.E., 2007: Python for scientific computing. *Computing in Science Engineering*, **9**, 10–20, doi: 10.1109/MCSE.2007.58.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, 2011: Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, **12**, 2825–2830, <u>https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html</u>.

- Pérez, F., and B.E. Granger, 2007: IPython: A system for interactive scientific computing. *Computing in Science Engineering*, **9**, 21–29, doi: 10.1109/MCSE.2007.53.
- Pérez, F., B.E. Granger, and J.D. Hunter, 2011: Python: An ecosystem for scientific computing. *Computing in Science Engineering*, **13**, 13–21, doi: 10.1109/MCSE.2010.119.
- Perkel, J.M., 2018: Why Jupyter is data scientists' computational notebook of choice. *Nature*, **563**, 145–146, doi: 10.1038/d41586-018-07196-1.
- Randles, B.M., I.V. Pasquetto, M.S. Golshan, and C.L. Borgman, 2017: Using the Jupyter notebook as a tool for open science: An empirical study. ACM/IEEE Joint Conference on Digital Libraries (JCDL), 1–2, <u>https://ieeexplore.ieee.org/document/7991618</u>.
- Seabold, S., and J. Perktold, 2010: Statsmodels: Econometric and statistical modeling with Python. *Proceedings of the 9th Python in Science Conference*, Austin, Texas, 92–96, doi: 10.25080/Majora-92bf1922-011.
- Snow, A.D., and 29 co-authors: pyproj4/pyproj 2.6.1 Release. Zenodo, doi: 10.5281/zenodo.3783866.
- Vallat, R., 2018: Pingouin: Statistics in Python. *Journal of Open Source Software*, **3**, 1026, doi: 10.21105/joss.01026.
- Virtanen, P., and 33 coauthors, 2020: SciPy 1.0: Fundamental algorithms for scientific computing in Python. *Nature Methods*, **17**, 261–272, doi: 10.1038/s41592-019-0686-2.
- Warmerdam, F., 2008: "The Geospatial Data Abstraction Library." In: Hall G.B. and Leahy M.G. (eds), *Open Source Approaches in Spatial Data Handling*. Advances in Geographic Information Science, vol 2. Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-74831-1_5.
- Waskom, M., and 29 co-authors, 2020: mwaskom/seaborn: v0.10.1 (April 2020) Zenodo, doi: 10.5281/zenodo.3767070
- Wofford, M.F., B.M. Boscoe, C.L. Borgman, I.V. Pasquetto, and M.S. Golshan, 2020: Jupyter notebooks as discovery mechanisms for open science: Citation practices in the astronomy community. *Computing in Science Engineering*, 22, 5–15, doi: 10.1109/MCSE.2019.2932067.

Table S1: Example *statsmodels* prediction table result from fitting a logistic regression model to the observed record of masting across site-years. This table represents the prediction result for a number of logistic models that are discussed in the text, including the null model.

		Pred.		
		0	1	
DS.	0 (non-mast)	85	0	
10	1 (mast)	16	0	

Figure S1: Correlation matrix across time series of standardized annual phenological regression slopes for all VIs used in this work.

Table S2: Results for all restricted two-VI logistic regression models using standardized annual slopes for color- and moisture-oriented VIs (see Tables 3 and 4 in the main paper). Model weights incorporate all listed models except the null model, disregarding $\Delta AICc$ values. See also Figures 7 and S2 for model coefficients in the top results ($\Delta AICc \leq 2$) listed here. Note that correctly predicted non-mast years are not listed but are included in the calculation of overall accuracy and Cohen's κ .

Fa lai
-
12
12 14 13
12 13 13
4 0 m m
0.378 0.197 0.114 0.052
+1.30
82.1
0 188

Figure S2: LMM logistic regression coefficients and 95% confidence intervals for the restricted two-VI model. See Tables 5 and S2 for model accuracy metrics.

Table S3: Averaged two-VI logistic model prediction results. Correctly predicted non-mast years (comprising 85 site-years) are not listed here. Model accuracy metrics are listed in Table 6.

Site	Correctly predicted mast years (3)	Missed mast years (Type 2 error) (13)	False alarms (Type 1 error) (0)		
CHITTY		1998, 2010, 2014			
KLOO	1993, 2010	1998, 2005, 2014			
SILVER		2005, 2010, 2014			
SULPHUR	1993	1998, 2005, 2010, 2014			

Table S4: Results for unrestricted multi-VI logistic regression models. Only those models with $\Delta AICc < 2$ are listed. The average model and the model with the highest value of Cohen's κ are both shown in bold. Note that correctly predicted non-mast years are not listed but are included in the calculations of overall accuracy and Cohen's κ . See Figures S3 and S4 for model coefficients and Table S5 for results of the best model prediction.

Cohen's K	0.253	0.359	0.253	0.204	0.146	0.161	0.253	0.182	0.227	0.253	0.253
Overall accuracy	0.861	0.881	0.861	0.842	0.842	0.822	0.861	0.832	0.851	0.861	0.861
False alarms	1	0	1	3	2	5	1	4	2	1	1
Missed mast years	13	12	13	13	14	13	13	13	13	13	13
Correct mast years	3	4	3	3	2	3	Э	б	ε	3	3
Model weight	0.177	0.124	0.120	0.088	0.088	0.087	0.084	0.084	0.077	0.071	1.000
ΔΑΙCc		+0.707	+0.779	+1.392	+1.396	+1.416	+1.494	+1.501	+1.668	+1.832	
AICc	78.0	78.7	78.8	79.4	79.4	79.4	79.5	79.5	79.6	79.8	
pseudo- R ²	0.235	0.252	0.251	0.270	0.219	0.270	0.243	0.269	0.241	0.239	
Logistic model VI components	RSR + NBR	GRVI + RSR + NBR	NDVI + RSR + NBR	EVI + KTTC_GRN + RSR + NBR	RSR + NDII	EVI + KTTC_GRN + RSR + KTTC_WET	KTTC_GRN + RSR + NBR	EVI + KTTC_GRN + RSR + NDII	EVI + RSR + KTTC_WET	RSR + NBR + KTTC_WET	average model

Figure S3: LMM logistic regression coefficients and 95% confidence intervals for the top (lowest *AICc*) unrestricted multi-VI model. See Table S4 for model accuracy metrics. Note that these coefficients differ little from the best result (that with the highest value of Cohen's κ ; Figure S4) for the same VIs, except for the additional influence of GRVI in that result.

Figure S4: LMM logistic regression coefficients and 95% confidence intervals for the best unrestricted multi-VI model (that with the highest value of Cohen's κ). See Table S4 for model accuracy metrics and Table S5 for model prediction results.

Table S5: Results for mast-year prediction using the best unrestricted multi-VI logistic regression model based on GRVI, RSR, and NBR. Correctly predicted non-mast years (comprising 85 site-years) are not listed here. See Table S4 for model accuracy metrics and Figure S4 for logistic model coefficients.

Site	Correctly predicted mast years (4)	Missed mast years (Type 2 error) (12)	False alarms (Type 1 error) (0)
CHITTY		1998, 2010, 2014	
KLOO	1993, 2010	1998, 2005, 2014	
SILVER	2005	2010, 2014	
SULPHUR	1993	1998, 2005, 2010, 2014	